2023/03/07 16:55

引用文献一覧

来週発送予定の修士論文の引用文献一覧です。皆様がアクセスしやすいように、この部分だけオンラインで共有させて頂きます。アルファベット順に並んでおります。本文は到着まで今しばらくお待ちいただければ幸いです。


1.    Agetsuma, N., Koda, R., Tsujino, R., & Agetsuma-Yanagihara, Y. (2016). Impact of anthropogenic disturbance on the density and activity pattern of deer evaluated with respect to spatial scale-dependency. Mammalian Biology, 81(2), 130–137. https://doi.org/10.1016/j.mambio.2015.09.005

2.    Anderson, J. T. (2009). Positive density dependence in seedlings of the neotropical tree species Garcinia macrophylla and Xylopia micans. Journal of Vegetation Science, 20(1), 27–36. https://doi.org/10.3170/2008-8-18488

3.    Bagchi, R., Gallery, R. E., Gripenberg, S., Gurr, S. J., Narayan, L., Addis, C. E., Freckleton, R. P., & Lewis, O. T. (2014). Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature, 506(7486), 85–88. https://doi.org/10.1038/nature12911

4.    Bardgett, R. D., Wardle, D. A., & Yeates, G. W. (1998). Linking above-ground and below-ground interactions: How plant responses to foliar herbivory influence soil organisms. Soil Biology and Biochemistry, 30(14), 1867–1878. https://doi.org/10.1016/S0038-0717(98)00069-8

5.    Bayandala, Y. F., & Seiwa, K. (2016). Roles of pathogens on replacement of tree seedlings in heterogeneous light environments in a temperate forest: A reciprocal seed sowing experiment. Journal of Ecology, 104(3), 765–772. https://doi.org/10.1111/1365-2745.12552

6.    Becklin, K. M., Pallo, M. L., & Galen, C. (2012). Willows indirectly reduce arbuscular mycorrhizal fungal colonization in understorey communities. Journal of Ecology, 100(2), 343–351. https://doi.org/10.1111/j.1365-2745.2011.01903.x

7.    Bennett, J. A., Maherali, H., Reinhart, K. O., Lekberg, Y., Hart, M. M., & Klironomos1, J. (2017). Population Dynamics Population Dynamics. In FOREST ECOLOGY (Vol. 69, Issue 2).

8.    Bever, J. D. (1994). Feeback between Plants and Their Soil Communities in an Old Field Community. Ecology, 75(7), 1965–1977.

9.    Bever, J. D., Westover, K. M., & Antonovics, J. (1997). Incorporating the Soil Community into Plant Population Dynamics : The Utility of the Feedback Approach Published by : British Ecological Society Stable URL : http://www.jstor.org/stable/2960528. Journal of Ecology, 85(5), 561–573.

10.    Canham, C. D. (1989). Different Respones to Gaps Among Shade-Tollerant Tree Species Author ( s ): Charles D . Canham Published by : Wiley on behalf of the Ecological Society of America Stable URL : https://www.jstor.org/stable/1940200 Ecological Society of America , Wiley are. EcologyEcology, 70(3), 548–550.

11.    Carteron, A., Beigas, M., Joly, S., Turner, B. L., & Laliberté, E. (2021). Temperate Forests Dominated by Arbuscular or Ectomycorrhizal Fungi Are Characterized by Strong Shifts from Saprotrophic to Mycorrhizal Fungi with Increasing Soil Depth. Microbial Ecology, 82(2), 377–390. https://doi.org/10.1007/s00248-020-01540-7

12.    Carteron, A., Vellend, M., & Laliberté, E. (2022). Mycorrhizal dominance reduces local tree species diversity across US forests. Nature Ecology and Evolution, 6(4), 370–374. https://doi.org/10.1038/s41559-021-01634-6

13.    Chabot, B. F., & Hicks, D. J. (1982). The ecology of leaf life spans. Annual Review of Ecology and Systematics. Volume 13, 229–259. https://doi.org/10.1146/annurev.es.13.110182.001305

14.    Chen, Y., Han, W., Tang, L., Tang, Z., & Fang, J. (2013). Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate, soil and plant growth form. Ecography, 36(2), 178–184. https://doi.org/10.1111/j.1600-0587.2011.06833.x

15.    Cheng, X., Han, H., Kang, F., Liu, K., Song, Y., Zhou, B., & Li, Y. (2014). Short-term effects of thinning on soil respiration in a pine (Pinus tabulaeformis) plantation. Biology and Fertility of Soils, 50(2), 357–367. https://doi.org/10.1007/s00374-013-0852-0

16.    Childs, S. W., & Flint, L. E. (1987). Effect of shadecards, shelterwoods, and clearcuts on temperature and moisture environments. Forest Ecology and Management, 18(3), 205–217. https://doi.org/10.1016/0378-1127(87)90161-7

17.    Corrales, A., Mangan, S. A., Turner, B. L., & Dalling, J. W. (2016). An ectomycorrhizal nitrogen economy facilitates monodominance in a neotropical forest. Ecology Letters, 19(4), 383–392. https://doi.org/10.1111/ele.12570

18.    Crawford, K. M., Bauer, J. T., Comita, L. S., Eppinga, M. B., Johnson, D. J., Mangan, S. A., Queenborough, S. A., Strand, A. E., Suding, K. N., Umbanhowar, J., & Bever, J. D. (2019). When and where plant-soil feedback may promote plant coexistence: a meta-analysis. Ecology Letters, 22(8), 1274–1284. https://doi.org/10.1111/ele.13278

19.    de Jalón, L. G., Limousin, J. M., Richard, F., Gessler, A., Peter, M., Hättenschwiler, S., & Milcu, A. (2020). Microhabitat and ectomycorrhizal effects on the establishment, growth and survival of Quercus ilex L. Seedlings under drought. PLoS ONE, 15(6), 1–18. https://doi.org/10.1371/journal.pone.0229807

20.    del Campo, A. D., Otsuki, K., Serengil, Y., Blanco, J. A., Yousefpour, R., & Wei, X. (2022). A global synthesis on the effects of thinning on hydrological processes: Implications for forest management. Forest Ecology and Management, 519(June), 120324. https://doi.org/10.1016/j.foreco.2022.120324

21.    Dickie, I. A., Davis, M., & Carswell, F. E. (2012). Quantification of mycorrhizal limitation in beech spread. New Zealand Journal of Ecology, 36(2), 210–215.

22.    Dickie, I. A., & Reich, P. B. (2005). Ectomycorrhizal fungal communities at forest edges. Journal of Ecology, 93(2), 244–255. https://doi.org/10.1111/j.1365-2745.2005.00977.x

23.    Ferriss, R. S. (1984). Effects of Microwave Oven Treatment on Microorganisms in Soil. In Phytopathology (Vol. 74, Issue 1, p. 121). https://doi.org/10.1094/phyto-74-121

24.    Gehring, C., & Bennett, A. (2009). Mycorrhizal fungal-plant-insect interactions: The importance of a community approach. Environmental Entomology, 38(1), 93–102. https://doi.org/10.1603/022.038.0111

25.    Givnish, T. J. (2002). Adaptive significance of evergreen vs. deciduous leaves: Solving the triple paradox. Silva Fennica, 36(3), 703–743. https://doi.org/10.14214/sf.535

26.    Hanberry, B. B. (2021). Addressing regional relationships between white-tailed deer densities and land classes. Ecology and Evolution, 11(19), 13570–13578. https://doi.org/10.1002/ece3.8084

27.    Haskins, K. E., & Gehring, C. A. (2004). Interactions with juniper alter pinyon pine ectomycorrhizal fungal communities. Ecology, 85(10), 2687–2692. https://doi.org/10.1890/04-0306

28.    Heinze, J., Wacker, A., & Kulmatiski, A. (2020). Plant–soil feedback effects altered by aboveground herbivory explain plant species abundance in the landscape. Ecology, 101(6), 1–10. https://doi.org/10.1002/ecy.3023

29.    Hood, L. A., Swaine, M. D., & Mason, P. A. (2004). The influence of spatial patterns of damping-off disease and arbuscular mycorrhizal colonization on tree seedling establishment in Ghanaian tropical forest soil. Journal of Ecology, 92(5), 816–823. https://doi.org/10.1111/j.0022-0477.2004.00917.x

30.    Kadowaki, K., Yamamoto, S., Sato, H., Tanabe, A. S., Hidaka, A., & Toju, H. (2018). Mycorrhizal fungi mediate the direction and strength of plant–soil feedbacks differently between arbuscular mycorrhizal and ectomycorrhizal communities. Communications Biology, 1(1), 1–5. https://doi.org/10.1038/s42003-018-0201-9

31.    Kayama, M. (2020). Growth and nutrient acclimation of evergreen oak seedlings infected with Boletus reticulatus in infertile colluvial soil in warm temperate Monsoon Asia: Evaluation of early growth. Forests, 11(8). https://doi.org/10.3390/f11080870

32.    Kayama, M., & Yamanaka, T. (2018). Growth of Quercus seedlings inoculated by ectomycorrhizal fungi at an abandoned site of reforestation. Journal of the Japanese Society of Revegetation Technology, 44(1), 33–38. https://doi.org/10.7211/jjsrt.44.33

33.    Kilpeläinen, J., Barbero-López, A., Vestberg, M., Heiskanen, J., & Lehto, T. (2017). Does severe soil drought have after-effects on arbuscular and ectomycorrhizal root colonisation and plant nutrition? Plant and Soil, 418(1–2), 377–386. https://doi.org/10.1007/s11104-017-3308-8

34.    Kim, B. J., Oh, D. H., Chun, S. H., & Lee, S. D. (2011). Distribution, density, and habitat use of the Korean water deer (Hydropotes inermis argyropus) in Korea. Landscape and Ecological Engineering, 7(2), 291–297. https://doi.org/10.1007/s11355-010-0127-y

35.    Kliromonos, J. N. (2002). Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature, 417(May), 1096–1099. doi.org/10.1038/417067a

36.    Knoblochová, T., Kohout, P., Püschel, D., Doubková, P., Frouz, J., Cajthaml, T., Kukla, J., Vosátka, M., & Rydlová, J. (2017). Asymmetric response of root-associated fungal communities of an arbuscular mycorrhizal grass and an ectomycorrhizal tree to their coexistence in primary succession. Mycorrhiza, 27(8), 775–789. https://doi.org/10.1007/s00572-017-0792-x

37.    Kobe, R. K., Pacala, S. W., Silander, J. A., & Canham, C. D. (1995). Juvenile tree survivorship as a component of shade tolerance. Ecological Applications, 5(2), 517–532. https://doi.org/10.2307/1942040

38.    Kulmatiski, A., Beard, K. H., Stevens, J. R., & Cobbold, S. M. (2008). Plant-soil feedbacks: A meta-analytical review. Ecology Letters, 11(9), 980–992. https://doi.org/10.1111/j.1461-0248.2008.01209.x

39.    Larson, J. L., & Siemann, E. (1998). Legumes may be symbiont-limited during old-field succession. American Midland Naturalist, 140(1), 90–95. https://doi.org/10.1674/0003-0031(1998)140[0090:LMBSLD]2.0.CO;2

40.    Lee, E. H., Park, S. H., Eo, J. K., Ka, K. H., & Eom, A. H. (2018). Acaulosproa koreana, a new species of arbuscular mycorrhizal fungi (Glomeromycota) associated with roots of woody plants in Korea. Mycobiology, 46(4), 341–348. https://doi.org/10.1080/12298093.2018.1548805

41.    Lodge, D. J. (1989). The influence of soil moisture and flooding on formation of VA-endo- and ectomycorrhizae in Populus and Salix. 117(2), 243–253.

42.    Ma, Y., Geng, Y., Huang, Y., Shi, Y., Niklaus, P. A., Schmid, B., & He, J. S. (2013). Effect of clear-cutting silviculture on soil respiration in a subtropical forest of China. Journal of Plant Ecology, 6(5), 335–348. https://doi.org/10.1093/jpe/rtt038

43.    Madritch, M. D., & Lindroth, R. L. (2011). Soil microbial communities adapt to genetic variation in leaf litter inputs. Oikos, 120(11), 1696–1704. https://doi.org/10.1111/j.1600-0706.2011.19195.x

44.    Maeda, M. (1954). The meaning of mycorrhiza in regard to systematic botany. 熊本大學理學部紀要. 第2部, 3, 57–84.

45.    Mangan, S. A., Schnitzer, S. A., Herre, E. A., MacK, K. M. L., Valencia, M. C., Sanchez, E. I., & Bever, J. D. (2010). Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature, 466(7307), 752–755. https://doi.org/10.1038/nature09273

46.    McCarthy-Neumann, S., & Iban, I. (2013). Reports Plant–soil feedback links negative distance dependence and light gradient partitioning during seedling establishment. The Ecological Society of America, 94(4), 780–786.

47.    Mcguire, K. L. (2007). Common Ectomycorrhizal Networks May Maintain. Ecology, 88(3), 567–574.

48.    McHugh, T. A., & Gehring, C. A. (2006). Below-ground interactions with arbuscular mycorrhizal shrubs decrease the performance of pinyon pine and the abundance of its ectomycorrhizas. New Phytologist, 171(1), 171–178. https://doi.org/10.1111/j.1469-8137.2006.01735.x

49.    Medve, R. J. (1984). the Mycorrhizae of Pioneer Species in Disturbed Ecosystems in Western Pennsylvania. American Journal of Botany, 71(6), 787–794. https://doi.org/10.1002/j.1537-2197.1984.tb14143.x

50.    Miyasaki, M., Sasaki, A., Kaneyuki, E., Ogura, A., Kinoshita, A., Nakatsubo, T., & Garden, B. (2015). 菌従属栄養植物ホンゴウソウの保全─生育環境の解明と移植─. Japanese Journal of Conservation Ecology, 220, 213–220.

51.    Mudrák, O., Hermová, M., Tesnerová, C., Rydlová, J., & Frouz, J. (2016). Above-ground and below-ground competition between the willow Salix caprea and its understorey. Journal of Vegetation Science, 27(1), 156–164. https://doi.org/10.1111/jvs.12330

52.    Murata, M., & Nara, K. (2017). Ectomycorrhizal fungal communities at different soil depths in a forest dominated by endangered pseudotsuga japonica. Nihon Ringakkai Shi/Journal of the Japanese Forestry Society, 99(5), 195–201. https://doi.org/10.4005/jjfs.99.195

53.    Nat Holland, J. (1995). Effects of above-ground herbivory on soil microbial biomass in conventional and no-tillage agroecosystems. Applied Soil Ecology, 2(4), 275–279. https://doi.org/10.1016/0929-1393(95)00055-2

54.    Nishida, T., Izumi, N., Katayama, N., & Ohgushi, T. (2009). Short-term response of arbuscular mycorrhizal association to spider mite herbivory. Population Ecology, 51(2), 329–334. https://doi.org/10.1007/s10144-008-0116-2

55.    Packer, A., & Clay, K. (2000). Soil pathogens and spatial patterns of seedling mortality in a temperate tree. Nature, 404(6775), 278–281. https://doi.org/10.1038/35005072

56.    Pangesti, N., Pineda, A., Pieterse, C. M. J., Dicke, M., & Loon, J. J. A. (2013). Two-way plant-mediated interactions between root-associated microbes and insects: From ecology to mechanisms. Frontiers in Plant Science, 4(OCT), 1–11. https://doi.org/10.3389/fpls.2013.00414

57.    Putten, W. H. V. der, Dijk, C. van, & Peters, B. A. M. (1993). Plant-specific soil-borne diseases contribute to succession in foredune vegetation. Nature, 362(6415), 53–56. https://doi.org/10.1038/362053a0

58.    Reich, P. B., Ellsworth, D. S., Walters, M. B., Vose, J. M., Gresham, C., Volin, J. C., & Bowman, W. D. (1999). Generality of leaf trait relationships: A test across six biomes. Ecology, 80(6), 1955–1969. https://doi.org/10.1890/0012-9658(1999)080[1955:GOLTRA]2.0.CO;2

59.    Reynolds, H. L., Packer, A., Bever, J. D., & Clay, K. (2003). Grassroots ecology: Plant-microbe-soil interactions as drivers of plant community structure and dynamics. Ecology, 84(9), 2281–2291. https://doi.org/10.1890/02-0298

60.    Seiwa, K., Negishi, Y., Eto, Y., Hishita, M., Masaka, K., Fukasawa, Y., Matsukura, K., & Suzuki, M. (2020). Successful seedling establishment of arbuscular mycorrhizal-compared to ectomycorrhizal-associated hardwoods in arbuscular cedar plantations. Forest Ecology and Management, 468(May), 118155. https://doi.org/10.1016/j.foreco.2020.118155

61.    Smith-Ramesh, L. M., & Reynolds, H. L. (2017). The next frontier of plant–soil feedback research: unraveling context dependence across biotic and abiotic gradients. Journal of Vegetation Science, 28(3), 484–494. https://doi.org/10.1111/jvs.12519

62.    Suding, K. N., Stanley Harpole, W., Fukami, T., Kulmatiski, A., Macdougall, A. S., Stein, C., & van der Putten, W. H. (2013). Consequences of plant-soil feedbacks in invasion. Journal of Ecology, 101(2), 298–308. https://doi.org/10.1111/1365-2745.12057

63.    Sveen, T. R., Netherway, T., Juhanson, J., Oja, J., Borgström, P., Viketoft, M., Strengbom, J., Bommarco, R., Clemmensen, K., Hallin, S., & Bahram, M. (2021). Plant-microbe interactions in response to grassland herbivory and nitrogen eutrophication. Soil Biology and Biochemistry, 156(October 2020). https://doi.org/10.1016/j.soilbio.2021.108208

64.    Swaty, R. L., Deckert, R. J., Whitham, T. G., & Gehring, C. A. (2004). Ectomycorrhizal abundance and community composition shifts with drought: Predictions from tree rings. Ecology, 85(4), 1072–1084. https://doi.org/10.1890/03-0224

65.    Takashima, T., Hikosaka, K., & Hirose, T. (2004). Photosynthesis or persistence: Nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant, Cell and Environment, 27(8), 1047–1054. https://doi.org/10.1111/j.1365-3040.2004.01209.x

66.    Tedersoo, L., Bahram, M., & Zobel, M. (2020). How mycorrhizal associations drive plant population and community biology. Science, 367(6480). https://doi.org/10.1126/science.aba1223

67.    Trocha, L. K., Weiser, E., & Robakowski, P. (2016). Interactive effects of juvenile defoliation, light conditions, and interspecific competition on growth and ectomycorrhizal colonization of Fagus sylvatica and Pinus sylvestris seedlings. Mycorrhiza, 26(1), 47–56. https://doi.org/10.1007/s00572-015-0645-4

68.    van der Putten, W. H., Bardgett, R. D., Bever, J. D., Bezemer, T. M., Casper, B. B., Fukami, T., Kardol, P., Klironomos, J. N., Kulmatiski, A., Schweitzer, J. A., Suding, K. N., van de Voorde, T. F. J., & Wardle, D. A. (2013). Plant-soil feedbacks: The past, the present and future challenges. Journal of Ecology, 101(2), 265–276. https://doi.org/10.1111/1365-2745.12054

69.    Wang, B., & Qiu, Y. L. (2006). Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza, 16(5), 299–363. https://doi.org/10.1007/s00572-005-0033-6

70.    Wang, Y., Li, Z., Wang, S., Wang, W., Wang, N., & Gu, J. (2022). Variations in Arbuscular Mycorrhizal Colonization Associated with Root Diameter and Hypodermis Passages Cells across Temperate and Tropical Woody Species. Forests, 13(2), 8–11. https://doi.org/10.3390/f13020140

71.    Wright, I. J., Westoby, M., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Diemer, M., Others, Wright, I. J., Reich, P. B., Ackerly, D. D., & Cornelissen, J. H. C. (2004). The worldwide leaf economics spectrum. Nature, 428, 821–827. www.nature.com/nature%0Ahttps://idp.nature.com/authorize/casa?redirect_uri=https://www.nature.com/articles/nature02403&casa_token=CtYdn6u63BcAAAAA:cNAkoHi669d547DoKaM3keUixX15dhKLnmyUD_oX2GBEB1VTe9mtWcMdFoXauJPFpb4iQItw5D0oAvb3

72.    Wulantuya, Masaka, K., Bayandala, Fukasawa, Y., Matsukura, K., & Seiwa, K. (2020). Gap creation alters the mode of conspecific distance-dependent seedling establishment via changes in the relative influence of pathogens and mycorrhizae. Oecologia, 192(2), 449–462. https://doi.org/10.1007/s00442-020-04596-x

73.    Yang, A. N., Lu, L., & Zhang, N. (2011). The diversity of arbuscular mycorrhizal fungi in the subtropical forest of Huangshan (Yellow Mountain), East-Central China. World Journal of Microbiology and Biotechnology, 27(10), 2351–2358. https://doi.org/10.1007/s11274-011-0702-x

74.    吉岡広美, 磯部香, 乾久子, & 菊地淳一. (2012). アベマキ-アラカシ混交林の外生菌根菌相と子実体の空間分布. 奈良教育大学自然環境教育センター紀要, 13, 1–13. http://hdl.handle.net/10105/9234

75.    林野庁. (2021). 平成14年3月29日 13林整整第882号 農林水産事務次官依命通知 最終改正:令和3年3年31日 2林整整第946号 第1 趣 旨.

76.    櫻庭知帆. (2018). 哺乳類分布の季節変動を規定する要因は何か-狭い範囲で 環境が大きく異なる生息地において -. https://www.ptonline.com/articles/how-to-get-better-mfi-results